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The motion of an auto:aomous mechanical system with one degree of freedom subject to small time-periodic perturbations and 
small dissipative forces in the vicinity of a stable position of equilibrium of the system is considered. It is assumed that resonance 
occurs in forced vibrations when the ratio of the frequency of small vibrations of the system to the frequency of the external 
periodic perturbation is close to an integer. The qualitative behaviour of an approximate system is studied. Depending on the 
parameters of the problem, namely, the magnitude of the dissipation and resonance detuning, a rigorous solution of the problem 
of the existence, number, and stability of periodic motions (the period being equal to that of the perturbation) arising from the 
position of equilibrium of the unperturbed system is given. As an example the motion of a pendulum with oscillating point of 
suspension is considered. Copyright © 1996 Elsevier Science Ltd. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  T R A N S F O R M A T I O N  
O F  T H E  H A M I L T O N I A N  

Consider a mechanical system close to integrable, the Hamiltonian of which can be represented as a 
series in powers of  a small parameter e 

H(x ,  px , t )  = Ht°)(x ,  Px) + EH(S)( x, Px, t) + e~ZH(2)(x, Px, t)+... (1.1) 

w h e r e  H(i)(x, px, t)  (i = 1, 2 . . . .  ) a re  21t-periodic func t ions  o f  t ime.  
W h e n  e = 0, le t  the  k ine t ic  a n d  p o t e n t i a l  e n e r g y  o f  the  sys tem be  1/2a(x).¢ 2 a n d  c(x), respect ively,  t he  

o r ig in  x = 0 of  the  sys tem of  c o o r d i n a t e s  b e i n g  a pos i t i on  of  s table  e q u i l i b r i u m .  
I n  a n e i g h b o u r h o o d  o f  the  p o i n t  x = 0, px = 0 the  functions/_/(i)  c an  b e  r e p r e s e n t e d  by the  series 

H (°) (x, Px) = nC2 °> + H~ °> + H~ °'+ .... H~ °> = ~ P~ / a(0)+ ~ c"(0)x 2 

H(i)(X, px , t )=H~i)  +Ht2i) +H~i)+ .... H~i) = f i ( t ) x+g i ( t ) px ,  i = 1,2,3 . . . .  

where H(~ )is a polynomial of degree k in x and Px. 
We assume that resonance occurs in the system under forced vibrations, that is, the frequency COo = 

~/(c"(O)/a(O)) of small vibrations of the system is close to an integer when e = 0. In addition, we shall 
assume that the system is subject to dissipative forces described by Rayleigh's function of the form R(:t) 
= 1/2~2 . 

The purpose of this paper is to study the problem of the existence, number and stability of 2~-periodic 
motions of the system depending on the parameters of the problem, namely, the magnitude of the 
dissipation and the closeness of the frequency COo to an integer. Moreover, we shall study the qualitative 
behaviour of an approximate (model) system in the vicinity of a position of equilibrium (e = 0) of the 
unperturbed system in the resonance case considered. 

First, we will introduce a number of canonical replacements of variables, which simplify the structure 
of  t he  H a m i l t o n i a n  (1.1). Se t t ing  

x = f.~x* I ~ o a ( O ) ,  Px = e-~ a/t%a(O)P] - 
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we write the new Hamiltonian in the form 

H*(x*,p*x,t) = ~tOo(X*2 + p*2)+e~H~O)(x*,p*)+ 

+E~H(4°)( x*, Px ) + c~  f ( t )  x~ + ~.~gft)p.~ + 0(~.) 

f f t )  = fl (t) I ~ o a ( O ) ,  g(t) = gj (t)x/cooa(O) 

(1.2) 

The corresponding equations of motion can be written as follows: 

• ~ • 
dx* l dt = On* l Opx, dp,. I dt = -On* l Ox* -~. ~.px + O(e) 

The quantity 6. is defined by ~ = eZt3a(O)5.. 
Henceforth, carrying out a canonical transformation x*, p* ~ ~, rl of  the Birkhoff type, we shall 

make the form H~ °) in (1.2) vanish and we shall simplify the form H4 (°), so that the Hamiltonian 
becomes 

K = ~to0(~ 2 +112)+ I//4E~3C2(~ 2 +112) 2 +e.~ f ( t )~+e~g( t ) r l+O(e . )  (1.3) 

and the equations of motion will be 

cl~l d t = O K  lOrl, a ~ l  d t = - 3 K  l 3 ~ - e ~ 5 . r l + O ( E )  ( 1 . 4 )  

W e  assume that the constant coefficient c2 in (1.3) is non-zero. 
Let too = N + e2/3~t., where N is an integer. We representf( t)  and g(t) as Fourier series 

f ( t )  = a u cos Nt + b N sin Nt + ~. (a n cos nt + b n sin nt) 
n a n  

g(t) = c~ cos Nt + d N sin Nt + ~. (c, cos nt + d n sin nt) 
n*N 

Discarding the terms O(e) and setting 8. = 0 in (1.4), we shall consider linear equations of  motion. 
Their  solutions of the form 

~* = e ~ ]~ [(-to0a . + nd, )cosnt - (to0b,, + nc, )sin nt] I (co 2 - n 2 ) 
n a n  

rl* = e ~ ~ [-(tO0c . +nb,  )cosnt + (na, - rood . )sin nt] I (to 2 - n 2 ) 
n a n  

represent forced oscillations of the system corresponding to non-resonance external perturbation 
frequencies when there is no dissipation. Setting 

g~ =g-g*, rh =~-n* 

we make the terms with non-resonance frequencies vanish in the terms e2/af(t)~ and e2/3g(t)rl of the 
Hamiltonian (1.3). 

Then, changing to new canonical variables 9, r by ~1 = ~/(2r) sin 9, rh = ~/(2r) cos 9 and equating to 
zero the terms containing the harmonics sin(9 + Nt), cos(tp + Nt)  in the new Hamiltonian, by means 
of the substitution tp, r ~ tp., r. given by 

r = r. + ~ 2 ~ .  [(b u - cu)cos(~,  + Nt) - (a N + d N) sin(~0. + Nt)] I (4N)+ O(E) 

= 9 .  - ~ / 2 ~  [(b~t - c N) sin(9. + Nt) + (a N + d~ ) cos(9, + Nt)] I (8N~'~'.) + O(e) 

we obtain a Hamiltonian of the form 
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r = Nr, +£~ix,r, +£~c2r, 2 + E~ ~ ,  xcos(~o. - Nt - T) + O(E) (1.5) 

where the angle T is defined by the relations sin T = (aN - dN)/xl, cos T = (bN + CN) ~] and ~1 = ~l(aN 
-dN)  2 + (b N + CN) 2, while x = xlN2. 

The equations of motion will be 

dg, I dt = 0F / Or, + e ~ ,  sin 9,  costp, + O(e) 
(1.6) 

dr, I dt = -OF / 39, - e~68,r,(l + cos 2q), ) + O(e) 

A replacement of variables q~,, !", -~ ~, R of the form 

tp, = ~1/- E~68, cos2V / (4N)+  O(e) 

r, = R - e~65,R sin 2 V / (2N) + O(e) 

enables us to simplify the dissipative terms in (1.6). Then the new Hamiltonian will have the form (1.5), 
with ~ and R in place of 9,  and r,, while the equations become 

d~ld t=OrlOR+O(e) ,  d R / d t = - O F I d ~ - e ~ 5 , R + O ( e )  

Finally, the change of variables 

~=Nt+T+t~(O+Tt /2 ) -T t l2 ,  R=(×/c2)~p ( a=s ignc2)  

and the introduction of a new time x by the formula x = e2/31 c 211/3 ×E/at reduce the Hamiltonian (1.5) 
to the form 

H = _ixp+p2 + . f ~ c o s 0 +  O(e~),  ! x =-t~ix./(ICE I~ x ~ )  (1.7) 

The corresponding equations of  motion can be written as follows: 

dOl dr=OH IOp+O(e~), dpl dx=-OH IOO-;(p+O(e Yo) (1.8) 

~=8, 1(Ic2 I~ ×~)  

2. I N V E S T I G A T I O N  OF A M O D E L  S Y S T E M  

Discarding the terms O(E ]ro) in (1.7) and (1.8), we obtain a truncated (model) system. Its motion can 
be described by tile equations 

dO/dx = -IX + 2p + cos0/(E~p), dp/dx = ~ p  sin0 - Zp (2.1) 

We shall study the qualitative behaviour of (2.1) for various values of Z and IX. 
The positions of equilibrium 0 = 0., p = p. of system (2.1) satisfy the equations 

sin0 = Z~-pp, cos0 = 2~p (IX - 20) 

whence, eliminating 0, we obtain the following equation for p 

F(p) - p'~ - Ixp2 + Y16(Z2 + 4IX 2 )p _ 1/16 = 0 (2.2) 

The number of real roots of (2.2) depends on the sign of the expression 
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Q(X, P-) = X 6 +8X4~ t2 + 16Z21 a4 - 8IA(4P "2 +9X 2)+ 108 (2.3) 

If Q > 0, Eq. (2.2) has one real root. If Q = 0, it has three roots, at least two of which are equal. 
And if Q < 0, there are three different real roots. Analysing F(p), we can see that all real roots of the 
equation F(p) = 0 are positive. 

The curve Q(Z, P) = 0, drawn by a computer, is shown in Fig. 1. The curve Q = 0 has a horizontal 
tangent at (0, 3/2) and it approaches the O~t axis asymptotically as ~t ~ +oo, the point P(31/22-1/3, 
3 • 24/3) being a cuspidal point. 

System (2.1) has one position of equilibrium in domain I (Q > 0) and three in domain III (Q < 0). 
To study the stability of the above positions of equilibrium we set 0 = 0. + x, p = p. + y. Then, from 

(2.1) we obtain a linearized system of equations, the roots of its characteristic equation having the form 

~.,.2 = - ~ X + ~/(69. - la)(ta - 29. ) (2.4) 

When 

s(x, ~t) - X 2 / 4 - (69. - la)(la - 2p. ) > 0 (2.5) 

both roots (2.4) have negative real parts and the position of equilibrium under consideration is 
asymptotically stable. Ifs(z, ~t) < 0, one of the roots (2.4) is positive, the position of equilibrium being 
unstable. 

From (2.2) and (2.5) we obtain 

s( Z, ~t) = 4F'(p.) 

i.e. the sign of s(x, ~t) is the same as that of the derivative F'(p) at the equilibrium point under con- 
sideration (a zero ofF(p)). Therefore, the corresponding position of equilibrium is asymptotically stable 
if F(p) increases on passing through zero, and unstable if it decreases. 

Hence, analysing F(p), we find that in domain I the unique position of equilibrium of system (2.1) 
is ff§ymptotically stable; in domain III the upper and lower roots of (2.2) correspond to asymptotically 
stable positions of equilibrium, while the middle root corresponds to an unstable position of equilibrium. 

An unstable position of equilibrium corresponds to a saddle point in the phase plane of (2.1) and a 
stable position of equilibrium corresponds either to a stable focus when (6p. - g)(~t - 2p,) < 0) or to 
a stable node (when the converse inequality is satisfied). 
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Fig. 1. 
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The type of singular points corresponding to asymptotically stable positions of equilibrium changes 
as the curves (in the X, Ix-plane) corresponding to p. = IX/6 and p. = IX/2 are crossed. Setting F(la/6) = 
0 and/7({1/2) = 0, from (2.2) we obtain the following equations for the curves (in Fig. 1 they are denoted 
by tx and 6, respec:tively) 

X 2 = ( 5 4 -  16Ix3)/(9Ix), Ix = 2/X 2 (2 .6)  

The pointsA, • 5/6 1/3 B, and C of intersection of these curves and the curve Q = 0 have coordinates (2 3 , 
(3/2)~), (3.21/6. 5 -5/6, 3. (2/25) 1/3 and (21/3, 21/3), respectively. At the point (0, 3/2) curve ~t has a common 
horizontal tangenll with the curve Q = 0, and it approaches the O x axis asymptotically as X --) +.o. 

The curves o., I~ and Q = 0 divide the half-plane X > 0 in the X, Ix plane into seven subdomains (indicat- 
ed by numbers 1-7 in Fig. 1), in which the trajectories of (2.1) behave differently. The corresponding 
phase space patterns are presented in Fig. 2(a)-(g) in the plane of u = ~/(2p) cos 0, ~ = ~/(2p)sin 0. 

A stable focus in subdomains 1 and 3 of domain I (Fig. 2a and c) and a stable node in subdomain 2 
(Fig. 2b) correspond to an asymptotically stable position of equilibrium. 

In domain III we distinguish four subdomains 4-7. The lower root of (2.2) corresponds to a stable 
node in subdomains 4, 5 and a stable focus in subdomains 6, 7. The upper root corresponds to a stable 
focus in subdomains 4, 7 and a stable node in subdomains 5, 6. A saddle point corresponds to the middle 
root. The phase space patterns of (2.1) corresponding to subdomains 4-7 are presented in Fig. 2(d)-(g). 

(~) (b) 
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Fig. 2. 
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. We observe that when % > 0, (2.1) has no dosed trajectories, which follows from the Bendixon criterion 
[1] and the form of the right-hand sides of (2.1). Each trajectory of the system converges to one (in 
domain I) or one of two (in domain III) asymptotically stable positions of equilibrium. 

For the curves a, I~, and Q = 0 the roots of Eq. (2.2) can be given explicitly: 
for the points of curve a 

p, =IX/6, P2.3 =~2IxT-~]25IX 3 - 5 4 / ( 1 2 ~ - )  

(in domain I the roots P2, 3 are complex conjugate) 
for the points of curve 13 

Pl,2 = }-t / 4"T" ¼~(IX 3 - 2 )11 - I . ,  P3 = ix /2  

(in domain I the roots Px, 2 are complex conjugate) 
for the points of the lower branch of the curve Q = 0 

Pt =P2 = (41a- ~4IX 2 -3%"" )/12, p.a = ( 1 6 p ~ ) - '  

for the points of the upper branch of Q = 0 

Pt =(16p2~) -t, pg_ =p3 =(4~t+~4Ix 2-3% 9-)/12 

for the point P on the curve Q = 0 

Pl = P2 = P3 = 2-~  

We will describe the changes affecting the singular points on these curves without presenting the phase 
space patterns of (2.1) corresponding to the curves a, 13 and Q = 0. 

On curves ct and 13 the singular point corresponding, respectively, to the equilibrium values Pt = la/6 
and P3 = I a]2 changes character (from a stable focus to a stable node or vice versa). For these points the 
characteristic equation has a multiple root. They correspond to a stable degenerate node in the phase 
plane. The character of the remaining singular points (in domain III) on a and 13 remains unchanged. 

On the curve Q = 0 two singular points from domain III, a saddle and a stable node, are combined 
into one compound singular point of saddle-node type with stable node sector [1] (the corresponding 
characteristic equation has one zero root and one negative real root). In domain I this compound singular 
point disappears and a single singular point remains, the type of which remains unchanged as the curve 
Q = 0 is crossed. 

At the point P of the curve Q = 0 the three singular points of (2.1) are combined into one compound 
singular point, which is a stable node [1]. 

3. P E R I O D I C  S O L U T I O N S  OF T HE  C O M P L E T E  S Y S T E M  

We consider the problems of the existence and stability of periodic solutions of the complete system 
of equations (1.8) with Hamiltonian (1.7) arising from the positions of equilibrium of the model 
system (2.1) for the values of % and Ix inside domains 1-7 in Fig. 1. In the neighbourhood of the 
position of equilibrium 0 = 0., p = p., (1.8) can be regarded as a quasi-linear system with perturbations 
of order e 1/3 having period T. - e 2/3 in x. Because the roots of the characteristic equation of the model 
system are of order one, they cannot be equal to ik21t/T (k is an integer), what occurs is the non-resonance 
case of Poincarr's theory in the problem of periodic notions of quasilinear systems [2]. 

Each position of equilibrium of the model system gives rise to one solution of (1.8) which is T-periodic 
in x and analytic in e lr3. In the original system, which is close to being Hamiltonian, this corresponds 
to a solution which is analytic in e 1/3 and periodic in time with period equal to that of the external perturb- 
ation. When e = 0 this periodic solution corresponds to the stable position of equilibriumx -= 0 of the 
unperturbed system. 
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T h e  conclusions concerning the stability of  the posi t ions of  equi l ibr ium of  the mode l  system can be 
ex tended  to the cor responding  per iodic  solutions of  the comple te  system: the asymptotical ly stable and 
unstable  posi t ions of  equi l ibr ium of  (2.1) turn  into asymptot ical ly  stable and, respectively, unstable  
per iodic  solutions; o f  (1.8). This follows f rom the continuity with respect  to e of  the characterist ic  
exponents  of  the cor responding  l inear  equat ions  of  pe r tu rbed  motion.  

4. E X A M P L E :  A P E N D U L U M  W I T H  A N  O S C I L L A T I N G  P O I N T  O F  
S U S P E N S I O N  

As an example consider the motion of a mathematical pendulum whose point of suspension undergoes horizontal 
harmonic oscillations of small amplitude. Let I be the length of the pendulum, let x be the angle between the 
pendulum and the vertical direction, and let a and t~ be the amplitude and frequency of oscillations and the point 
of suspension. The pendulum is subject to dissipative forces given by the Rayleigh formula R = 1/2fix '2 (here and 
henceforth a prime denotes differentiation with respect to the dimensionless "time" D.t, which will be denoted by 
t below). 

The motion of the pendulum can be described by the equation 

x "  +fix' +tOo 2 sinx = esint cosx 

e = a l l ~ l ,  m2=gl(~21)  

(4.1) 

This equation can be replaced by an equivalent system of two equations of the form 

x '=~H l3px, px =-~H l3x-f ix" 

H = I//2 p2 _ 0)2 cos x =- E sint sin x 

(4.2) 

When e = 0 and f = 0 system (4.2) has the solution x = 0, Px = 0, which corresponds to a stable position of 
equilibrium of the pendulum. In a neighbourhood of this solution the Hamiltonian can be represented by the series 

H = ~(p2  x + OOZoXZ) - ~4 t°02x4 + e(-s int ,  x + ~ sint-.r 3 )+... (4.3) 

where the dots stand for terms of degree higher than four in x andpx. 
Suppose that the frequency too of small characteristic oscillations of the pendulum is close to one. We shall assume 

that ~ = l+2-s/3e2/3~t and also 8 = emil.. 
Following the discussion in Section 1, we perform a number of canonical coordinate transformations which reduce 

the Hamiltonian (4.3) to the form (1.7) and the system of equations of motion to the form (1.8). This sequence 
of coordinate transformations has the form 

x = e~x  * I~o, Px = e~ (~Ol'x (4.4) 

x* = ~ + e~  (5~3.+ 9~rl 2 )/(192to 0 )+O(e~  ) 

• ~ 2rl + 113 ) / (64o)0) + O(e~ ) (4.5) px=Tl - e  (5~ 

~ = ~ r  sin(p, "q = ~[2-r cos~p (4.6) 

9 = 9* + ~ t ~  sin(9, + t) t ( 8 ~ , )  + O(e 4~ ) (4.7) 

r=r,-I / /4e~ 2 ~ , c o s ( q ) , + t ) + O ( E  ~ )  

~,  = ~ - I//4e~8, cos2v +O(e ~ ) (4.8) 

r, = R -  ~ e ~ f , R s i n  2¥ + O(e ~ ) 

V = t - 0 ,  R = 2  ~ p  (4.9) 

Along with the last transformation, we introduce the new independent variable x = TSr3e~t. As a result of the 
transformations (4.4)-(4.9), the system of equations (4.2) takes the form 

dOI dx=~H lOp+O(~.~), dpl dx=-~H lgO-xp+O(e  ~ ) 

H = - I a p + p  2 + , fpcos0+O(E~) .  X = 2il. 
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From the results of Sections 2 and 3 it follows that the stable position of equilibrium of the pendulum which 
exists for e = 0 gives rise to one or three 27t-periodic motions of the pendulum when 0 < e "~ 1 (respectively, in 
domains I and III in Fig. 1), to which there correspond one or three positions of equilibrium of the model system 
(Section 2). Determining the equilibrium values of 0 and p (we denote them by 00 and P0 for domain I and by 0i, 
Pi (i = 1, 2, 3) for domain III) and applying the transformations (4.4)-(4.9) in the reverse order, we find that in 
domain I the 27t-periodic solution has the form 

and in domain III 

xo(t ) = 2 ~ e ~  ~p--0-0 sin (t - 00 )+O(e ~ ) (4.10) 

xi(t ) = 2 ~ e ~  ~ i  s in( t -Oi)+O(e~) ,  i = 1,2,3 (4.11) 

The solutions (4.10) and (4.11) describe small-amplitude oscillations of the pendulum with frequency equal to 
that of the point of suspension. The initial angle between the pendulum and the vertical direction for the oscillations 
in question is negative (the pendulum is displaced to the left). The initial angular veloeityx6(0) < 0 in subdomain 
1 andx~(0) > 0 in subdomains 2 and 3 (see Fig. 1);x~(0) > 0,~(0)  > 0 in domain I I I ,~(0)  > 0 in subdomains 5, 
6, and x~(0) < 0 in subdomains 4, 7. 

From the results of Section 3 it follows that in domain I the unique periodic solutionx0(t) is asymptotically stable. 
In domain III the solutions xl(t) and x3(t ) corresponding to the oscillations of the pendulum having the smallest 
and, respectively, the largest amplitude are also asymptotically stable, while the solution x2(t) corresponding to 
oscillations with the middle amplitude is unstable. 
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